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Abstract:

Heart disease is perpetually among the top-ranked causes for deaths worldwide, thus making its early and accurate
prediction a matter of paramount importance. Thanks to the digitization of the medical knowledge base, ML models have
shown a great promise in the analysis of complex clinical datasets to enable effective diagnosis. Nevertheless, the
centralized nature of traditional ML approaches engenders some serious concerns regarding patient privacy, regulatory
compliance, and data interoperability. This review systematically discusses the privacy-preserving paradigms, particularly
FL, that support the collaborative building of models without access to raw patient data. We assess the performance of
algorithms such as Support Vector Machines, XGBoost, and hybrid ensemble models in federated settings and study their
impacts on varied healthcare datasets. Advanced modeling and optimization techniques are proposed to circumvent class
imbalance, overfitting, and heterogeneity in distributed settings. Also reviewed are cryptographic techniques, differential
privacy, and secure aggregation, which are key in protecting sensitive information. This paper tries to provide a holistic
picture of the trends, challenges, and future directions of privacy-aware ML for heart disease prediction.

Keywords: Heart Disease Prediction, Federated Learning, Privacy-Preserving Al, Support Vector Machine, XGBoost,
Medical Data Security

1. INTRODUCTION

Cardiovascular diseases still remain among the major causes of death, with millions dying each year. The earlier the
diagnosis and intervention, the better the prospects for patients and fewer financial burdens on healthcare systems [1].
Thus, with the digitization of medical records and health data proliferating between institutions, there appears to be much
untapped potential for the development of enhanced computational models for heart disease prediction. However, this data
is often distributed across different hospitals and research centers, and barriers exist regarding data sharing, privacy, and
interoperability [2]. In regular centralized machine learning approaches, raw data must be transmitted; but this is impossible
because of regulatory and ethical issues. Federated learning and privacy-preserving data mining approaches appear to be
potential solution avenues to overcome these obstacles [3]. This work is.aimed at the development of an efficient heart
disease prediction model from distributed media. Fig.1shows Heart Disease Prediction
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Cardiovascular illnesses rank first in terms of causing death, claiming nearly 17.9 million deaths yearly, which constitutes
about 32% of all deaths worldwide, according to WHO. Heart diseases, including coronary artery disease [4], arrhythmias,
and heart failure, are the most common among CVDs and are largely responsible for the socio-economic burden. Upward
trends of heart-related ailments have been attributed to sedentary lifestyles, unhealthy food habits, obesity, diabetes, and
smoking, especially in low- and middle-income countries [5]. On top of that comes the silent onset of early symptoms in
most cases, making diagnosis at a very early stage almost impossible until symptoms are severe. Hence, the need for
mechanisms that will help in cantilevering the disease early and an accurate prediction of the disease. Combining digital
technologies with health—which include Electronic Health Records (EHR)—has become an ultimate answer to the
realization of data-driven healthcare [6]. Machine learning has further entered this scene to train-medical data with high
dimensions and uncover latent patterns in either clinical or ECG features or demographics using algorithms like Support
Vector Machines (SVM), Decision Trees, Neural Transfer, and XGBoost. Thereby stratifying risks of patients, enabling
preventive care, and facilitating personalised treatment choices when the choice is there on. But the course of success for
machine learning in healthcare depends largely on access to large and diverse datasets, which are all too often split apart
across multiple institutions [7].

Whilst the advantages are theoretically there, challenges abound for the centralized learning frameworks in medicine,
mainly because patient data is so sensitive and heavily protected by privacy laws. Centralizing datasets from several
different institutions increases the chances for data breach and identity theft and could raise even higher legal and ethical
concerns [8]. The stigma around confidentiality often makes it very difficult for either patient groups or providers to
proceed with sharing data, thereby posing the greatest challenge to assembling comprehensive training data sets. Apart
from these, strict regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and the
General Data Protection Regulation (GDPR) [9] in the EU lay down stringent restrictions on how medical data can be
shared and processes, particularly across borders. These hurdles therefore, impede the linking of data from multiple sources
to aircraft training for accurate, and generalized ML models. On top of this, the technical inconveniences stare back:
centralized solutions for model training often suffer from issues of scalability, latencies, and heavy infrastructure costs.
Furthermore, the difference present between patient data structure and quality among various institutions stigmatizes
integration even more [10]. In contrast, the traditional setting of data accumulation within a central repository for training
has been somewhat identified as a risky and rather inefficient alternative in the case of healthcare settings.

With these issues, FL has developed into one such transformative stage, making it ideally suited to the healthcare industry.
FL allows various medical institutions to train machine learning models collaboratively without having to share the dirty
data. Instead, the institutions (clients) train locally on the private datasets and share only the learned parameters, such as
weights or gradients, with the central server for aggregation. This decentralized setup complies with data protection laws
and serves to minimize the risk associated with privacy issues [11] The aggregated global model is then sent back to the
institutions for further local training, fostering an iterative and privacy-compliant learning process. FL really shines when
it comes to settings such as heart disease prediction, where data lies in different healthcare centers, and patients differ based
on demographics and clinical profiles. By enabling secure, distributed training, FL ensures model generalizability and
performance while remaining compliant with HIPAA and GDPR. Therefore, FL is not only a technical innovation but also
a practical and scalable ethical solution to developing robust predictive models in modern healthcare landscapes.

With FL securing distributed training, generalizability, and the performance of Al models, it guarantees the health
information privacy act (HIPAA) and the General Data Protection Regulation (GDPR). In fact, this keeps FL from being
seen merely as a technical innovation and situates it as a real-world, scalable, and morally appropriate solution to build
powerful predictive models in modern healthcare ecosystems. In this light, the present review provides a comprehensive
discussion on recent machine learning-based approaches for predicting heart diseases, analyzing their methodology,
datasets, performance criteria, and key limitations-laying the foundation for the incorporation of privacy-preserving
technologies like FL into clinical use [12].

1. LITERATURE REVIEW

Chintan M. Bhatt et al. [1] (2023) performed K-modes clustering with Huang initialization and used four algorithms,
namely Random Forest, Decision Tree, MLP, and XGBoost, on a Kaggle dataset consisting of 70,000 instances. Results
of GridSearchCV on hyperparameter tuning showed MLP to be better than its counterparts, with classification accuracy
reported at 87.28% and AUC scores reaching 0.95. Nevertheless, issues of generalizability arise owing to the size and
nature of the dataset.

ALLE HARSHA VARDHAN et al. [2] (2023) proposed a hybrid ensemble classifier which combined strong and weak
learners, utilizing a large training and validation dataset to improve prediction accuracy for heart conditions. The ensemble
outperformed single classifiers such as Random Forest, Decision Tree, SVM, Naive Bayes, and Logistic Regression.
However, the study does not mention any limitations of the model or its generalizability to datasets that are diverse.
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Zeinab Noroozi et al. [3] (2023) have located and examined a set of sixteen feature selection methods and seven ML
algorithms using the Cleveland Heart Disease dataset. The performance of J48 improved greatly through feature selection,
but the accuracy for MLP and Random Forest deteriorated. The best accuracy observed was 85.5%, attained by SVM-CFS,
Information Gain, and the like. This leads to a number of issues, especially because of the small size of the dataset restricting
use of the models for actual clinical applications.

Nadikatla Chandrasekhar et al. [4] (2023) implemented six algorithms: Random Forest, KNN, Logistic Regression, Naive
Bayes, Gradient Boosting, and AdaBoost on Cleveland and IEEE Dataport datasets. Their ensemble-based approach using
soft voting yielded better performance with an accuracy of 93.44% on Cleveland and 95% on IEEE Dataport. This,
however, puts into question the applicability in real-life clinical settings due to dependence on curated datasets.

Qadri et al. [5] (2023) proposed a new method of feature engineering, Principal Component Heart Failure (PCHF), and
tested it under nine machine learning algorithms. The Decision Tree model, in particular, managed to give 100% accuracy,
showing its real potential. This method, however, may suffer from overfitting as it was tested on a dataset that is rather
small or too specific.

Biswas et al. [6] (2023) attempted to perform feature selection by Chi-Square, ANOVA, and Mutual Information methods,
using six classifiers. Random Forest combined with the mutual information subset SF3 gave the best result of 94.51%
accuracy and AURC of 94.95. However, this also limited the generalization of the model across other diverse populations
because of its dependency on a particular healthcare dataset.

K. Arumugam et al. [7] (2023) worked on diabetic-specialized heart disease prediction employing Decision Tree, Naive
Bayes, and SVM classifications, wherein the Decision Tree performed slightly better than others. However, the study
stands constrained due to the limited availability of complete datasets specific to diabetic patients.

Ahmed A. H. Alkurdi et al. [8] (2023) built the entire preprocessing pipeline for normalization, SMOTE, and feature
selection with the UCI Heart Disease dataset. They evaluated Decision Trees, Random Forest, SVM, and k-NN classifiers,
all highly capable of metrics such as accuracy and ROC AUC. The biggest disadvantage is that it has become overly
dependent on SMOTE and thus, might be an introduction for synthetic bias.

Mr. J. A. Jevin et al. [9] (2023) proposed a distributed association rule mining framework utilizing intelligent agents across
different medical data sites under privacy constraints. Under stringent privacy considerations, the framework enabled the
efficient discovery of global rules with very low communication. The drawback, however, is that coordination of agents
becomes rather difficult in heterogeneous and dynamic environments.

K-modes clustering and machine-learning models like Random Forest, Decision Tree, MLP, and XGBoost were applied
by Mukesh Kumar Saini et al. [10] (2023) on a Kaggle Dataset of 70,000 samples to GRIDSEARCHCYV for tuning of
parameters. MLP reported accuracy of 87.28% with good AUC scores though dependence on a single dataset undermines
the utility of the model in the real world.

M. H. Fadly et al. [15] (2023) applied SVM, AdaBoost, and hybrid SVM-AdaBoost models on the UCI Cardiac Disease
dataset based on the CRISP-DM methodology. The hybrid technique obtained 90% accuracy, which was better than what
SVM and AdaBoost achieved individually. Nevertheless, there was not any external validation, so the method cannot be
generalized to broader clinical environments.

S. Yuda Prasetyo et al. [16] (2023) analyzed SVM, Naive Bayes, Decision Tree, and Random Forest algorithms on the
Heart Failure Prediction dataset. Random Forest (91.85%) and SVM (90.76%) showed promising results, thereby justifying
their use for heart disease risk prediction. Nonetheless, the study requires further tuning and validation on a larger dataset.

H. V. R. Bindelaetal. [17] (2023) applied SVM with an RBF kernel and K-means clustering on the UCI Cardiac Disease
dataset. SVM scored 91.85% accuracy, while K-means was able to segregate some subgroups with an accuracy of 84%.
The primary drawback is the manual setting of the number of clusters, which decreases consistency and scalability.

[Six ML models, namely Logistic Regression, SVM, Decision Tree, Bagging, XGBoost, and LightGBM, were assessed
for the prediction of myocardial disease by J. Miah et al. 18] (2023). XGBoost scored first with 92.72% accuracy. The lack
of external data testing curbed the robustness of the model.

Anudeepa Gon et al. [19] (2023) examined whether Neural Networks, Logistic Regression, SVM, Random Forest, Naive
Bayes, AdaBoost, and XGBoost yield improvements when applied to clinical and demographic features. Hence, different
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versions of the system could attain great accuracy, thus promoting early detection through feature importance insights. On
the other hand, applicability to new populations now depends on the quality and scope of the training data.

V. R. Burugadda et al. [20] (2023) worked with Logistic Regression, Decision Tree, Random Forest, SVM, and ANN
methods and predicted heart failure readmissions using EHR data. The models helped identify the patients at a high risk of
readmissions to better plan their interventions. Limitations include some lack of interpretability and the underrepresenting
of some socioeconomic variables.

In 2024, S. NagaMallik Raj et al. [21] designed a web application thatintegrated XGB-Classifier and gradient boosting are
applied on UCI Heart Disease dataset. With an accuracy of 85% and 93%, the system offers reliable risk predictions,
allowing the users to evaluate the risk adequately. However, the existing prediction model does not consider the time-based
features and may be overfitting; therefore, restricting its wider applicability.

In 2024, Sarah A. Alzakari et al. [22] integrated an loT-system with XGBoost and Bi-LSTM models for remote monitoring
of cardiac diseases with the real-time and electronic clinical data. This framework produces 99.4% accurate prediction with
the best temporal forecast, but privacy issues and challenges in deploying it on a large scale come up as major obstacles.

J. Shanker Mishra et al. [23] (2024) took advantage of XGBoost, Bi-LSTM, and ResNet for cardiac datasets and MRI
imaging to achieve an enhanced diagnostic accuracy of up to 99.4%. The Deep learning inclusion in the system increased
the capability for enhancing feature representation while still requiring solutions for model interpretability and annotated
data.

H. F. El-Sofany et al. (2024) [24] theoretically used feature selection (Chi-square, ANOVA, Mutual Information),
combined with ten ML models, including XGBoost and the SVM, on the UCI dataset. With the SF-2, XGBoost attained
an accuracy of 97.57% and an AUC of 98% according to SHAP interpretation. Still, clinical validation is lacking, and this
brings the synthetic data bias into question.

Class imbalance was tackled by Adedayo Ogunpola et al. [25] (2024) through optimizations of XGBoost, CNN, Random
Forest, and various other classifiers on the UCI dataset. XGBoost topped the leaderboards with 98.50% accuracy and
98.71% F1 score. While the results are quite good, one wonders whether the said results will generalize induced because
the tuning was done in a specific dataset.

Table 1: Based on Machine Learning Techniques

Ref (Author, Technique Used Dataset Key Findings Results Limitations
Year) Used
[1] Chintan M. | K-modes clustering | Kaggle GridSearchCV | MLP: 87.28% | Limited
Bhatt et al., | with Huang | dataset tuning accuracy; AUC | generalizability
2023 initialization + RF, | (70,000 improves up to 0.95 due to dataset
DT, MLP, XGB instances) classification. size and
MLP composition
outperforms
others.
[2] ALLE | Hybrid Ensemble | Large Ensemble Ensemble > RF, | Not  specified;
HARSHA Classifier training and | model DT, SVM, NB, | possibly
VARDHAN et | integrating  weak | validation outperforms LR in accuracy | generalizability
al., 2023 and strong learners | datasets individual not discussed
models in
predicting
heart
conditions
[3] Zeinab | 16 Feature | Cleveland Feature Accuracy up to | Small dataset,
Noroozi et al., | Selection Methods | Heart selection 85.5% with | limited  real-
2023 + 7 ML algorithms | Disease boosts J48 | SVM-CFS, Info | world
Dataset performance Gain applicability
but  reduces
MLP and RF
[4] Nadikatla | RF, KNN, LR, NB, | Cleveland & | Ensemble Soft ~ Voting: | Dependency on
Chandrasekhar | GB, AdaBoost + | IEEE outperforms 93.44% curated datasets
etal., 2023 Soft Voting | Dataport individual (Cleveland),
Ensemble datasets models
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95% (IEEE
Dataport)
[5] A. M. Qadri | PCHF feature | Health data | DT  achieves | DT: 100% | Overfitting due
etal., 2023 engineering + 9 ML | (dataset perfect accuracy to small or
algorithms unspecified) | classification; specific dataset
PCHF
improves
detection
[6] Niloy | Chi-Square, Not RF with | RF: 94.51% | Dataset
Biswas et al., | ANOVA, Mutual | specified mutual  info | accuracy, 94.95 | dependency
2023 Info + 6 ML | (healthcare features (SF3) | AURC limits broad
classifiers dataset) performs best generalization
[7] K. | Decision Tree, | Diabetes- DT performs | DT > SVM, NB | Limited
Arumugam et | Naive Bayes, SVM | specific best in diabetic | (accuracy not | diabetic-
al., 2023 heart disease | heart disease | specified) specific data
dataset prediction
[8] Ahmed A. | DT, RF, SVM, k- | UCI  Heart | Robust High scores | Overuse of
H. Alkurdi et | NN + Preprocessing | Disease preprocessing | across all | SMOTE may
al., 2023 (SMOTE, Dataset pipeline metrics cause synthetic
Normalization, enhances (Accuracy, bias
Feature Selection) model Precision, ROC
performance AUC)
[91 Mr. J. A. | Distributed Distributed Localized Efficient rule | Complexity in
Jevin et al., | Association Rule | medical data | computation discovery with | agent
2023 Mining using Multi- | (privacy enables minimal coordination in
Agent System constraints) | privacy- communication | dynamic
preserving rule networks
mining
[10] Mukesh | K-modes clustering | Kaggle MLP achieves | MLP: 87.28% | Single dataset
Kumar Saini et | + RF, DT, MLP, | (70,000 highest accuracy, AUC | limits  cross-
al., 2023 XGB + | instances) accuracy; up to 0.95 scenario
GridSearchCV strong AUC applicability
values for all
[15] M. H.| SVM, AdaBoost, | UCI Cardiac | Hybrid model | Hybrid: 90%, | No external
Fadly et al. | Hybrid (SVM- | Disease offers best | SVM & | validation;
(2023) AdaBoost) Dataset performance AdaBoost: limits
using CRISP- | 86.67% generalizability
DM
methodology
[16] S. Yuda | SVM, Naive Bayes, | Heart RF and SVM | RF: 91.85%, | Needs further
Prasetyo et al. | Decision Tree, | Failure showed strong | SVM: 90.76% | tuning and
(2023) Random Forest Prediction accuracy  for testing on larger
Dataset heart  disease datasets
risk prediction
[17] H. V. R. | SVM (RBF), K- | UCICardiac | High SVM | SVM: 91.85%, | Manual cluster
Bindela et al. | means Clustering Disease accuracy; K- | K-means: 84% | selection limits
(2023) Dataset means  finds consistency
hidden
subgroups
[18] J. Miah et | LR, SVM, DT, | Not UCI | XGBoost XGBoost: No external
al. (2023) Bagging, XGBoost, | Cardiac outperformed 92.72%, validation
LightGBM Disease others in | LightGBM: reduces
Dataset myocardial 90.60% robustness
illness
prediction
[19] Anudeepa | Neural Networks, | Clinical & | High accuracy; | High accuracy | Real-world
Gon et al. | LR, SVM, RF, NB, | Demographi | feature (not quantified) | applicability
(2023) AdaBoost, XGBoost | ¢ Data importance depends on
helps in early dataset quality
detection
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[20] V. R.|LR, DT, RF, SVM, | Electronic ML models | Evaluated via | Gaps in
Burugadda et | ANN Health help  identify | accuracy, interpretability
al. (2023) Records high-risk heart | precision, and fairness due
(EHR) failure recall, F1 to unbalanced
readmission features
patients
[21] S. | XGB-Classifier, UCI Heart | Web app | XGB:  85%, | Excludes time-
NagaMallik Gradient Boosting Disease enables early | GB: 93% based feature;
Raj et al. Dataset diagnosis and possible
(2024) risk prediction overfitting
[22] Sarah A. | loT + XGBoost + | ECD + | Remote Accuracy: Privacy and loT
Alzakari et al. | Bi-LSTM Real-time monitoring 99.4% deployment
(2024) Data with Bi-LSTM challenges
yields excellent
temporal
prediction
[23] J. Shanker | XGBoost, Bi- | Cardiac Combines Accuracy: up | Needs
Mishra et al. | LSTM, ResNet Data + MRI | imaging and | to 99.4% annotated data;
(2024) Images structured data; interpretability
deep learning concerns
boosts
accuracy
[24] H. F. El- | FS (Chi2, ANOVA, | UCI Cardiac | XGBoost with | Accuracy: Lacks clinical
Sofany et al. | MI) + 10 ML | Disease SF-2 subset | 97.57%, AUC: | validation;
(2024) Models incl. | Dataset gave top | 98% synthetic  data
XGBoost, SVM, RF accuracy; may bias results
SHAP for
explainability
[25] Adedayo | XGBoost, CNN, | UCI Cardiac | Tackles class | Accuracy: Limited
Ogunpolaetal. | RF, + 4 others Disease imbalance; 98.50%, F1: | generalizability
(2024) Dataset XGBoost 98.71% beyond  tuned
achieved best dataset
overall metrics

111. MACHINE LEARNING TECHNIQUES FOR HEART DISEASE PREDICTION

Supervised algorithms for learning are also applied to train medical-labeled datasets for heart disease prediction. They
detect concealed patterns in data sets on patients to predict health outcomes. The models are useful for risk stratification,
timely diagnosis, and individual treatment so that healthcare actions can be carried out earlier [13].

a) Support Vector Machines (SVM)

SVMs for heart disease classification try to find optimal hyperplanes in high-dimensional spaces. They do well with binary
classification and work best with small-scale data that are well structured. The flipside to SVMs is parameter selection
since if parameters are selected wrongly, the classifier becomes almost useless; they also are not great with medical data
often fraught with noise and sometimes with an imbalance of classes [14].

b) Decision Trees and Random Forests

Decision Trees provide interpretable, rule-based classifications. Random Forests as ensemble methods aim at increasing
accuracy via combining multiple decision trees [15]. They can handle missing values and large feature sets considering
plenty of technicalities, which makes them fit for clinical datasets. Still, if not trained properly, they risk overfitting the
model.

c) Neural Networks and Deep Learning
As Neural Networks and Deep Learning models such as CNNs and LSTMs learn complicated, non-linear associations in
huge datasets, they suit very well image-based or sequential cardiac data. While offering massive precision, they demand

a lot of data, computational power, and all-in-all can't offer an alternative in terms of explainability [16] for medical
application.
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d) Gradient Boosting (XGBoost, LightGBM)

Feature engineering transforms raw data into features acceptable for modeling, whereas feature selection refers to
techniques used to select features that are most relevant for model training. Chi-square, ANOVA, and Mutual Information
methods are good examples that reduce dimensionality [17], thereby giving better accuracy and avoiding overfitting.
However, if the wrong parameters get selected, important clinical variables might be omitted, thus decreasing model
robustness.

A. Ensemble and Hybrid Models

Ensemble classification models increase the performance and robustness of the model by combining outputs from different
classifiers [18]. Ensemble methods employ bagging, boosting, and stacking techniques. Hybrid models possess the ability
to integrate different algorithm strengths (e.g. SVM-AdaBoost) and can generalize better. They, however, often demand
huge computational resources and may suffer from interpretability issues [19].

B. Limitations of Current Approaches
Some existing ML models for predicting heart diseases use data that are mostly very small or imbalanced, or worse, biased,
thereby limiting their ability to generalize. In addition, the environmental setting of data collection is centralized, proving
to be a big issue in maintaining privacy. Models thus can also be sometimes not so interpretable, and real-time usability is

also low [20]. Technicalities of being in overfitting, cost of training, and regulations also work against deployment on large
scale in clinical practices.

1IV. COMPARATIVE ANALYSIS OF EXISTING ML APPROACHES

COMPARATIVE ANALYSIS OF EXISTING ML APPROACHES
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Fig .2: COMPARATIVE ANALYSIS OF EXISTING ML APPROACHES

The bar graph titled "Comparative Analysis of Existing ML Approaches" is a performance comparison of various machine-
learning models for the prediction of heart diseases made reference to in [18], [21], [22], [23], [24], and [25]. The y-axis
shows values for accuracy (up to 100), while the x-axis gives corresponding reference numbers.

Red-colored bars denote the accuracies (%) of different advanced ML methods except for SVM(RBF) and K-means
Clustering, as in the legend. The blue bars for SVM(RBF) and K-means Clustering stand firm at 0% throughout, suggesting
that either these methods were not employed, or their performance was not reported in these studies in particular.

Among the models evaluated, studies [22] and [23] exhibit the highest accuracy at 99%, followed closely by [25] with 98%
and then [24] at 97%. Study [21] completes the fifth position with 93%, and finally, Study [18] bears the least rating with
92% of accuracy, respectively, showing that there is clear precedence for recent or hybrid deep learning-based methods
(e.g., Bi-LSTM, CNN, and XGBoost ensembles) over traditional ones.
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The chart also marks the increasing dominance of contemporary ensemble and deep learning models for heart disease
prediction, while implying their remained limited or no usage of SVM (RBF) or K-means amongst these particular ones.

VII. CONCLUSION

The review attests to a transformation that came about when privacy-preserving machine learning methods were applied
toward heart disease prediction. Simply put, as healthcare data increases with sensitivity, conventional centralized methods
are rendered obsolete by privacy concerns, legal liabilities, and lack of interoperability. As a result, Federated Learning is
now being hailed as a revolutionary alternative paradigm that supports decentralized training among different institutions
without compromising data confidentiality. The inclusion of algorithms such as SVM and XGBoost in the Federated
Learning framework has so far yielded promising results in terms of both predictive performance and regulatory
compliance. Besides that, differential privacy, homomorphic encryption, and secure model aggregation methods create an
additional layer of defense against data leakage through adversarial attacks. Another concern is imbalance between classes
in data sets, which can be dealt with and generalized well by adopting a more advanced approach to local modeling, for
there is often a trade-off in enhancing applicability. Despite existing problems like data heterogeneity, communication
overheads, and delayed convergence, federated approaches offer a scalable, ethical, and efficient solution for healthcare
systems of the 21st century. Therefore, continued investigations, mainly on navigating the harmony of federated model
updates and incorporating explainability, will eventually pay off in Capitalizing Privacy-Aware Al in Clinical Settings.
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