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Abstract:  

Heart disease is perpetually among the top-ranked causes for deaths worldwide, thus making its early and accurate 

prediction a matter of paramount importance. Thanks to the digitization of the medical knowledge base, ML models have 

shown a great promise in the analysis of complex clinical datasets to enable effective diagnosis. Nevertheless, the 

centralized nature of traditional ML approaches engenders some serious concerns regarding patient privacy, regulatory 

compliance, and data interoperability. This review systematically discusses the privacy-preserving paradigms, particularly 

FL, that support the collaborative building of models without access to raw patient data. We assess the performance of 

algorithms such as Support Vector Machines, XGBoost, and hybrid ensemble models in federated settings and study their 

impacts on varied healthcare datasets. Advanced modeling and optimization techniques are proposed to circumvent class 

imbalance, overfitting, and heterogeneity in distributed settings. Also reviewed are cryptographic techniques, differential 

privacy, and secure aggregation, which are key in protecting sensitive information. This paper tries to provide a holistic 

picture of the trends, challenges, and future directions of privacy-aware ML for heart disease prediction. 

Keywords: Heart Disease Prediction, Federated Learning, Privacy-Preserving AI, Support Vector Machine, XGBoost, 

Medical Data Security 

 

I. INTRODUCTION 

Cardiovascular diseases still remain among the major causes of death, with millions dying each year. The earlier the 

diagnosis and intervention, the better the prospects for patients and fewer financial burdens on healthcare systems [1]. 

Thus, with the digitization of medical records and health data proliferating between institutions, there appears to be much 

untapped potential for the development of enhanced computational models for heart disease prediction. However, this data 

is often distributed across different hospitals and research centers, and barriers exist regarding data sharing, privacy, and 

interoperability [2]. In regular centralized machine learning approaches, raw data must be transmitted; but this is impossible 

because of regulatory and ethical issues. Federated learning and privacy-preserving data mining approaches appear to be 

potential solution avenues to overcome these obstacles [3]. This work is aimed at the development of an efficient heart 

disease prediction model from distributed media. Fig.1shows Heart Disease Prediction 

 

 

Fig.1: Heart Disease Prediction [3] 
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Cardiovascular illnesses rank first in terms of causing death, claiming nearly 17.9 million deaths yearly, which constitutes 

about 32% of all deaths worldwide, according to WHO. Heart diseases, including coronary artery disease [4], arrhythmias, 

and heart failure, are the most common among CVDs and are largely responsible for the socio-economic burden. Upward 

trends of heart-related ailments have been attributed to sedentary lifestyles, unhealthy food habits, obesity, diabetes, and 

smoking, especially in low- and middle-income countries [5]. On top of that comes the silent onset of early symptoms in 

most cases, making diagnosis at a very early stage almost impossible until symptoms are severe. Hence, the need for 

mechanisms that will help in cantilevering the disease early and an accurate prediction of the disease. Combining digital 

technologies with health—which include Electronic Health Records (EHR)—has become an ultimate answer to the 

realization of data-driven healthcare [6]. Machine learning has further entered this scene to train-medical data with high 

dimensions and uncover latent patterns in either clinical or ECG features or demographics using algorithms like Support 

Vector Machines (SVM), Decision Trees, Neural Transfer, and XGBoost. Thereby stratifying risks of patients, enabling 

preventive care, and facilitating personalised treatment choices when the choice is there on. But the course of success for 

machine learning in healthcare depends largely on access to large and diverse datasets, which are all too often split apart 

across multiple institutions [7]. 

 

Whilst the advantages are theoretically there, challenges abound for the centralized learning frameworks in medicine, 

mainly because patient data is so sensitive and heavily protected by privacy laws. Centralizing datasets from several 

different institutions increases the chances for data breach and identity theft and could raise even higher legal and ethical 

concerns [8]. The stigma around confidentiality often makes it very difficult for either patient groups or providers to 

proceed with sharing data, thereby posing the greatest challenge to assembling comprehensive training data sets. Apart 

from these, strict regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and the 

General Data Protection Regulation (GDPR) [9] in the EU lay down stringent restrictions on how medical data can be 

shared and processes, particularly across borders. These hurdles therefore, impede the linking of data from multiple sources 

to aircraft training for accurate, and generalized ML models. On top of this, the technical inconveniences stare back: 

centralized solutions for model training often suffer from issues of scalability, latencies, and heavy infrastructure costs. 

Furthermore, the difference present between patient data structure and quality among various institutions stigmatizes 

integration even more [10]. In contrast, the traditional setting of data accumulation within a central repository for training 

has been somewhat identified as a risky and rather inefficient alternative in the case of healthcare settings. 

 

With these issues, FL has developed into one such transformative stage, making it ideally suited to the healthcare industry. 

FL allows various medical institutions to train machine learning models collaboratively without having to share the dirty 

data. Instead, the institutions (clients) train locally on the private datasets and share only the learned parameters, such as 

weights or gradients, with the central server for aggregation. This decentralized setup complies with data protection laws 

and serves to minimize the risk associated with privacy issues [11] The aggregated global model is then sent back to the 

institutions for further local training, fostering an iterative and privacy-compliant learning process. FL really shines when 

it comes to settings such as heart disease prediction, where data lies in different healthcare centers, and patients differ based 

on demographics and clinical profiles. By enabling secure, distributed training, FL ensures model generalizability and 

performance while remaining compliant with HIPAA and GDPR. Therefore, FL is not only a technical innovation but also 

a practical and scalable ethical solution to developing robust predictive models in modern healthcare landscapes. 

 

With FL securing distributed training, generalizability, and the performance of AI models, it guarantees the health 

information privacy act (HIPAA) and the General Data Protection Regulation (GDPR). In fact, this keeps FL from being 

seen merely as a technical innovation and situates it as a real-world, scalable, and morally appropriate solution to build 

powerful predictive models in modern healthcare ecosystems. In this light, the present review provides a comprehensive 

discussion on recent machine learning-based approaches for predicting heart diseases, analyzing their methodology, 

datasets, performance criteria, and key limitations-laying the foundation for the incorporation of privacy-preserving 

technologies like FL into clinical use [12]. 

 

II. LITERATURE REVIEW 

Chintan M. Bhatt et al. [1] (2023) performed K-modes clustering with Huang initialization and used four algorithms, 

namely Random Forest, Decision Tree, MLP, and XGBoost, on a Kaggle dataset consisting of 70,000 instances. Results 

of GridSearchCV on hyperparameter tuning showed MLP to be better than its counterparts, with classification accuracy 

reported at 87.28% and AUC scores reaching 0.95. Nevertheless, issues of generalizability arise owing to the size and 

nature of the dataset. 

ALLE HARSHA VARDHAN et al. [2] (2023) proposed a hybrid ensemble classifier which combined strong and weak 

learners, utilizing a large training and validation dataset to improve prediction accuracy for heart conditions. The ensemble 

outperformed single classifiers such as Random Forest, Decision Tree, SVM, Naive Bayes, and Logistic Regression. 

However, the study does not mention any limitations of the model or its generalizability to datasets that are diverse. 
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Zeinab Noroozi et al. [3]  (2023) have located and examined a set of sixteen feature selection methods and seven ML 

algorithms using the Cleveland Heart Disease dataset. The performance of J48 improved greatly through feature selection, 

but the accuracy for MLP and Random Forest deteriorated. The best accuracy observed was 85.5%, attained by SVM-CFS, 

Information Gain, and the like. This leads to a number of issues, especially because of the small size of the dataset restricting 

use of the models for actual clinical applications. 

Nadikatla Chandrasekhar et al. [4] (2023) implemented six algorithms: Random Forest, KNN, Logistic Regression, Naïve 

Bayes, Gradient Boosting, and AdaBoost on Cleveland and IEEE Dataport datasets. Their ensemble-based approach using 

soft voting yielded better performance with an accuracy of 93.44% on Cleveland and 95% on IEEE Dataport. This, 

however, puts into question the applicability in real-life clinical settings due to dependence on curated datasets. 

Qadri et al. [5] (2023) proposed a new method of feature engineering, Principal Component Heart Failure (PCHF), and 

tested it under nine machine learning algorithms. The Decision Tree model, in particular, managed to give 100% accuracy, 

showing its real potential. This method, however, may suffer from overfitting as it was tested on a dataset that is rather 

small or too specific. 

Biswas et al. [6]  (2023) attempted to perform feature selection by Chi-Square, ANOVA, and Mutual Information methods, 

using six classifiers. Random Forest combined with the mutual information subset SF3 gave the best result of 94.51% 

accuracy and AURC of 94.95. However, this also limited the generalization of the model across other diverse populations 

because of its dependency on a particular healthcare dataset. 

K. Arumugam et al. [7]  (2023) worked on diabetic-specialized heart disease prediction employing Decision Tree, Naive 

Bayes, and SVM classifications, wherein the Decision Tree performed slightly better than others. However, the study 

stands constrained due to the limited availability of complete datasets specific to diabetic patients.  

Ahmed A. H. Alkurdi et al. [8] (2023) built the entire preprocessing pipeline for normalization, SMOTE, and feature 

selection with the UCI Heart Disease dataset. They evaluated Decision Trees, Random Forest, SVM, and k-NN classifiers, 

all highly capable of metrics such as accuracy and ROC AUC. The biggest disadvantage is that it has become overly 

dependent on SMOTE and thus, might be an introduction for synthetic bias. 

Mr. J. A. Jevin et al. [9] (2023) proposed a distributed association rule mining framework utilizing intelligent agents across 

different medical data sites under privacy constraints. Under stringent privacy considerations, the framework enabled the 

efficient discovery of global rules with very low communication. The drawback, however, is that coordination of agents 

becomes rather difficult in heterogeneous and dynamic environments. 

K-modes clustering and machine-learning models like Random Forest, Decision Tree, MLP, and XGBoost were applied 

by Mukesh Kumar Saini et al. [10]  (2023) on a Kaggle Dataset of 70,000 samples to GRIDSEARCHCV for tuning of 

parameters. MLP reported accuracy of 87.28% with good AUC scores though dependence on a single dataset undermines 

the utility of the model in the real world. 

M. H. Fadly et al. [15] (2023) applied SVM, AdaBoost, and hybrid SVM-AdaBoost models on the UCI Cardiac Disease 

dataset based on the CRISP-DM methodology. The hybrid technique obtained 90% accuracy, which was better than what 

SVM and AdaBoost achieved individually. Nevertheless, there was not any external validation, so the method cannot be 

generalized to broader clinical environments. 

S. Yuda Prasetyo et al. [16] (2023) analyzed SVM, Naive Bayes, Decision Tree, and Random Forest algorithms on the 

Heart Failure Prediction dataset. Random Forest (91.85%) and SVM (90.76%) showed promising results, thereby justifying 

their use for heart disease risk prediction. Nonetheless, the study requires further tuning and validation on a larger dataset. 

H. V. R. Bindela et al. [17]  (2023) applied SVM with an RBF kernel and K-means clustering on the UCI Cardiac Disease 

dataset. SVM scored 91.85% accuracy, while K-means was able to segregate some subgroups with an accuracy of 84%. 

The primary drawback is the manual setting of the number of clusters, which decreases consistency and scalability. 

[Six ML models, namely Logistic Regression, SVM, Decision Tree, Bagging, XGBoost, and LightGBM, were assessed 

for the prediction of myocardial disease by J. Miah et al. 18] (2023). XGBoost scored first with 92.72% accuracy. The lack 

of external data testing curbed the robustness of the model. 

Anudeepa Gon et al. [19] (2023) examined whether Neural Networks, Logistic Regression, SVM, Random Forest, Naive 

Bayes, AdaBoost, and XGBoost yield improvements when applied to clinical and demographic features. Hence, different 
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versions of the system could attain great accuracy, thus promoting early detection through feature importance insights. On 

the other hand, applicability to new populations now depends on the quality and scope of the training data. 

V. R. Burugadda et al. [20] (2023) worked with Logistic Regression, Decision Tree, Random Forest, SVM, and ANN 

methods and predicted heart failure readmissions using EHR data. The models helped identify the patients at a high risk of 

readmissions to better plan their interventions. Limitations include some lack of interpretability and the underrepresenting 

of some socioeconomic variables. 

In 2024, S. NagaMallik Raj et al. [21]  designed a web application thatIntegrated XGB-Classifier and gradient boosting are 

applied on UCI Heart Disease dataset. With an accuracy of 85% and 93%, the system offers reliable risk predictions, 

allowing the users to evaluate the risk adequately. However, the existing prediction model does not consider the time-based 

features and may be overfitting; therefore, restricting its wider applicability. 

In 2024, Sarah A. Alzakari et al. [22]  integrated an IoT-system with XGBoost and Bi-LSTM models for remote monitoring 

of cardiac diseases with the real-time and electronic clinical data. This framework produces 99.4% accurate prediction with 

the best temporal forecast, but privacy issues and challenges in deploying it on a large scale come up as major obstacles. 

J. Shanker Mishra et al. [23] (2024) took advantage of XGBoost, Bi-LSTM, and ResNet for cardiac datasets and MRI 

imaging to achieve an enhanced diagnostic accuracy of up to 99.4%. The Deep learning inclusion in the system increased 

the capability for enhancing feature representation while still requiring solutions for model interpretability and annotated 

data. 

H. F. El-Sofany et al. (2024) [24] theoretically used feature selection (Chi-square, ANOVA, Mutual Information), 

combined with ten ML models, including XGBoost and the SVM, on the UCI dataset. With the SF-2, XGBoost attained 

an accuracy of 97.57% and an AUC of 98% according to SHAP interpretation. Still, clinical validation is lacking, and this 

brings the synthetic data bias into question.  

Class imbalance was tackled by Adedayo Ogunpola et al. [25]  (2024) through optimizations of XGBoost, CNN, Random 

Forest, and various other classifiers on the UCI dataset. XGBoost topped the leaderboards with 98.50% accuracy and 

98.71% F1 score. While the results are quite good, one wonders whether the said results will generalize induced because 

the tuning was done in a specific dataset. 

 

Table 1: Based on Machine Learning Techniques 

Ref (Author, 

Year) 

Technique Used Dataset 

Used 

Key Findings Results Limitations 

[1] Chintan M. 

Bhatt et al., 

2023 

K-modes clustering 

with Huang 

initialization + RF, 

DT, MLP, XGB 

Kaggle 

dataset 

(70,000 

instances) 

GridSearchCV 

tuning 

improves 

classification. 

MLP 

outperforms 

others. 

MLP: 87.28% 

accuracy; AUC 

up to 0.95 

Limited 

generalizability 

due to dataset 

size and 

composition 

[2] ALLE 

HARSHA 

VARDHAN et 

al., 2023 

Hybrid Ensemble 

Classifier 

integrating weak 

and strong learners 

Large 

training and 

validation 

datasets 

Ensemble 

model 

outperforms 

individual 

models in 

predicting 

heart 

conditions 

Ensemble > RF, 

DT, SVM, NB, 

LR in accuracy 

Not specified; 

possibly 

generalizability 

not discussed 

[3] Zeinab 

Noroozi et al., 

2023 

16 Feature 

Selection Methods 

+ 7 ML algorithms 

Cleveland 

Heart 

Disease 

Dataset 

Feature 

selection 

boosts J48 

performance 

but reduces 

MLP and RF 

Accuracy up to 

85.5% with 

SVM-CFS, Info 

Gain 

Small dataset, 

limited real-

world 

applicability 

[4] Nadikatla 

Chandrasekhar 

et al., 2023 

RF, KNN, LR, NB, 

GB, AdaBoost + 

Soft Voting 

Ensemble 

Cleveland & 

IEEE 

Dataport 

datasets 

Ensemble 

outperforms 

individual 

models 

Soft Voting: 

93.44% 

(Cleveland), 

Dependency on 

curated datasets 
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95% (IEEE 

Dataport) 

[5] A. M. Qadri 

et al., 2023 

PCHF feature 

engineering + 9 ML 

algorithms 

Health data 

(dataset 

unspecified) 

DT achieves 

perfect 

classification; 

PCHF 

improves 

detection 

DT: 100% 

accuracy 

Overfitting due 

to small or 

specific dataset 

[6] Niloy 

Biswas et al., 

2023 

Chi-Square, 

ANOVA, Mutual 

Info + 6 ML 

classifiers 

Not 

specified 

(healthcare 

dataset) 

RF with 

mutual info 

features (SF3) 

performs best 

RF: 94.51% 

accuracy, 94.95 

AURC 

Dataset 

dependency 

limits broad 

generalization 

[7] K. 

Arumugam et 

al., 2023 

Decision Tree, 

Naive Bayes, SVM 

Diabetes-

specific 

heart disease 

dataset 

DT performs 

best in diabetic 

heart disease 

prediction 

DT > SVM, NB 

(accuracy not 

specified) 

Limited 

diabetic-

specific data 

[8] Ahmed A. 

H. Alkurdi et 

al., 2023 

DT, RF, SVM, k-

NN + Preprocessing 

(SMOTE, 

Normalization, 

Feature Selection) 

UCI Heart 

Disease 

Dataset 

Robust 

preprocessing 

pipeline 

enhances 

model 

performance 

High scores 

across all 

metrics 

(Accuracy, 

Precision, ROC 

AUC) 

Overuse of 

SMOTE may 

cause synthetic 

bias 

[9] Mr. J. A. 

Jevin et al., 

2023 

Distributed 

Association Rule 

Mining using Multi-

Agent System 

Distributed 

medical data 

(privacy 

constraints) 

Localized 

computation 

enables 

privacy-

preserving rule 

mining 

Efficient rule 

discovery with 

minimal 

communication 

Complexity in 

agent 

coordination in 

dynamic 

networks 

[10] Mukesh 

Kumar Saini et 

al., 2023 

K-modes clustering 

+ RF, DT, MLP, 

XGB + 

GridSearchCV 

Kaggle 

(70,000 

instances) 

MLP achieves 

highest 

accuracy; 

strong AUC 

values for all 

MLP: 87.28% 

accuracy, AUC 

up to 0.95 

Single dataset 

limits cross-

scenario 

applicability 

[15] M. H. 

Fadly et al. 

(2023) 

SVM, AdaBoost, 

Hybrid (SVM-

AdaBoost) 

UCI Cardiac 

Disease 

Dataset 

Hybrid model 

offers best 

performance 

using CRISP-

DM 

methodology 

Hybrid: 90%, 

SVM & 

AdaBoost: 

86.67% 

No external 

validation; 

limits 

generalizability 

[16] S. Yuda 

Prasetyo et al. 

(2023) 

SVM, Naive Bayes, 

Decision Tree, 

Random Forest 

Heart 

Failure 

Prediction 

Dataset 

RF and SVM 

showed strong 

accuracy for 

heart disease 

risk prediction 

RF: 91.85%, 

SVM: 90.76% 

Needs further 

tuning and 

testing on larger 

datasets 

[17] H. V. R. 

Bindela et al. 

(2023) 

SVM (RBF), K-

means Clustering 

UCI Cardiac 

Disease 

Dataset 

High SVM 

accuracy; K-

means finds 

hidden 

subgroups 

SVM: 91.85%, 

K-means: 84% 

Manual cluster 

selection limits 

consistency 

[18] J. Miah et 

al. (2023) 

LR, SVM, DT, 

Bagging, XGBoost, 

LightGBM 

Not UCI 

Cardiac 

Disease 

Dataset 

XGBoost 

outperformed 

others in 

myocardial 

illness 

prediction 

XGBoost: 

92.72%, 

LightGBM: 

90.60% 

No external 

validation 

reduces 

robustness 

[19] Anudeepa 

Gon et al. 

(2023) 

Neural Networks, 

LR, SVM, RF, NB, 

AdaBoost, XGBoost 

Clinical & 

Demographi

c Data 

High accuracy; 

feature 

importance 

helps in early 

detection 

High accuracy 

(not quantified) 

Real-world 

applicability 

depends on 

dataset quality 
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[20] V. R. 

Burugadda et 

al. (2023) 

LR, DT, RF, SVM, 

ANN 

Electronic 

Health 

Records 

(EHR) 

ML models 

help identify 

high-risk heart 

failure 

readmission 

patients 

Evaluated via 

accuracy, 

precision, 

recall, F1 

Gaps in 

interpretability 

and fairness due 

to unbalanced 

features 

[21] S. 

NagaMallik 

Raj et al. 

(2024) 

XGB-Classifier, 

Gradient Boosting 

UCI Heart 

Disease 

Dataset 

Web app 

enables early 

diagnosis and 

risk prediction 

XGB: 85%, 

GB: 93% 

Excludes time-

based feature; 

possible 

overfitting 

[22] Sarah A. 

Alzakari et al. 

(2024) 

IoT + XGBoost + 

Bi-LSTM 

ECD + 

Real-time 

Data 

Remote 

monitoring 

with Bi-LSTM 

yields excellent 

temporal 

prediction 

Accuracy: 

99.4% 

Privacy and IoT 

deployment 

challenges 

[23] J. Shanker 

Mishra et al. 

(2024) 

XGBoost, Bi-

LSTM, ResNet 

Cardiac 

Data + MRI 

Images 

Combines 

imaging and 

structured data; 

deep learning 

boosts 

accuracy 

Accuracy: up 

to 99.4% 

Needs 

annotated data; 

interpretability 

concerns 

[24] H. F. El-

Sofany et al. 

(2024) 

FS (Chi2, ANOVA, 

MI) + 10 ML 

Models incl. 

XGBoost, SVM, RF 

UCI Cardiac 

Disease 

Dataset 

XGBoost with 

SF-2 subset 

gave top 

accuracy; 

SHAP for 

explainability 

Accuracy: 

97.57%, AUC: 

98% 

Lacks clinical 

validation; 

synthetic data 

may bias results 

[25] Adedayo 

Ogunpola et al. 

(2024) 

XGBoost, CNN, 

RF, + 4 others 

UCI Cardiac 

Disease 

Dataset 

Tackles class 

imbalance; 

XGBoost 

achieved best 

overall metrics 

Accuracy: 

98.50%, F1: 

98.71% 

Limited 

generalizability 

beyond tuned 

dataset 

 
 

III. MACHINE LEARNING TECHNIQUES FOR HEART DISEASE PREDICTION 

 

Supervised algorithms for learning are also applied to train medical-labeled datasets for heart disease prediction. They 

detect concealed patterns in data sets on patients to predict health outcomes. The models are useful for risk stratification, 

timely diagnosis, and individual treatment so that healthcare actions can be carried out earlier [13]. 

 

a) Support Vector Machines (SVM) 

 

SVMs for heart disease classification try to find optimal hyperplanes in high-dimensional spaces. They do well with binary 

classification and work best with small-scale data that are well structured. The flipside to SVMs is parameter selection 

since if parameters are selected wrongly, the classifier becomes almost useless; they also are not great with medical data 

often fraught with noise and sometimes with an imbalance of classes [14].  

 

b) Decision Trees and Random Forests 

 

Decision Trees provide interpretable, rule-based classifications. Random Forests as ensemble methods aim at increasing 

accuracy via combining multiple decision trees [15]. They can handle missing values and large feature sets considering 

plenty of technicalities, which makes them fit for clinical datasets. Still, if not trained properly, they risk overfitting the 

model. 

 

c) Neural Networks and Deep Learning 

 

As Neural Networks and Deep Learning models such as CNNs and LSTMs learn complicated, non-linear associations in 

huge datasets, they suit very well image-based or sequential cardiac data. While offering massive precision, they demand 

a lot of data, computational power, and all-in-all can't offer an alternative in terms of explainability [16] for medical 

application. 
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d) Gradient Boosting (XGBoost, LightGBM) 

 

Feature engineering transforms raw data into features acceptable for modeling, whereas feature selection refers to 

techniques used to select features that are most relevant for model training. Chi-square, ANOVA, and Mutual Information 

methods are good examples that reduce dimensionality [17], thereby giving better accuracy and avoiding overfitting. 

However, if the wrong parameters get selected, important clinical variables might be omitted, thus decreasing model 

robustness. 

 

A. Ensemble and Hybrid Models 

 

Ensemble classification models increase the performance and robustness of the model by combining outputs from different 

classifiers [18]. Ensemble methods employ bagging, boosting, and stacking techniques. Hybrid models possess the ability 

to integrate different algorithm strengths (e.g. SVM-AdaBoost) and can generalize better. They, however, often demand 

huge computational resources and may suffer from interpretability issues [19]. 

 

B. Limitations of Current Approaches 

 

Some existing ML models for predicting heart diseases use data that are mostly very small or imbalanced, or worse, biased, 

thereby limiting their ability to generalize. In addition, the environmental setting of data collection is centralized, proving 

to be a big issue in maintaining privacy. Models thus can also be sometimes not so interpretable, and real-time usability is 

also low [20]. Technicalities of being in overfitting, cost of training, and regulations also work against deployment on large 

scale in clinical practices. 

 
IV. COMPARATIVE ANALYSIS OF EXISTING ML APPROACHES 

 

 
Fig .2: COMPARATIVE ANALYSIS OF EXISTING ML APPROACHES 

 

The bar graph titled "Comparative Analysis of Existing ML Approaches" is a performance comparison of various machine-

learning models for the prediction of heart diseases made reference to in [18], [21], [22], [23], [24], and [25]. The y-axis 

shows values for accuracy (up to 100), while the x-axis gives corresponding reference numbers. 

 

Red-colored bars denote the accuracies (%) of different advanced ML methods except for SVM(RBF) and K-means 

Clustering, as in the legend. The blue bars for SVM(RBF) and K-means Clustering stand firm at 0% throughout, suggesting 

that either these methods were not employed, or their performance was not reported in these studies in particular. 

 

Among the models evaluated, studies [22] and [23] exhibit the highest accuracy at 99%, followed closely by [25] with 98% 

and then [24] at 97%. Study [21] completes the fifth position with 93%, and finally, Study [18] bears the least rating with 

92% of accuracy, respectively, showing that there is clear precedence for recent or hybrid deep learning-based methods 

(e.g., Bi-LSTM, CNN, and XGBoost ensembles) over traditional ones.  
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The chart also marks the increasing dominance of contemporary ensemble and deep learning models for heart disease 

prediction, while implying their remained limited or no usage of SVM (RBF) or K-means amongst these particular ones. 

 

VII. CONCLUSION 

The review attests to a transformation that came about when privacy-preserving machine learning methods were applied 

toward heart disease prediction. Simply put, as healthcare data increases with sensitivity, conventional centralized methods 

are rendered obsolete by privacy concerns, legal liabilities, and lack of interoperability. As a result, Federated Learning is 

now being hailed as a revolutionary alternative paradigm that supports decentralized training among different institutions 

without compromising data confidentiality. The inclusion of algorithms such as SVM and XGBoost in the Federated 

Learning framework has so far yielded promising results in terms of both predictive performance and regulatory 

compliance. Besides that, differential privacy, homomorphic encryption, and secure model aggregation methods create an 

additional layer of defense against data leakage through adversarial attacks. Another concern is imbalance between classes 

in data sets, which can be dealt with and generalized well by adopting a more advanced approach to local modeling, for 

there is often a trade-off in enhancing applicability. Despite existing problems like data heterogeneity, communication 

overheads, and delayed convergence, federated approaches offer a scalable, ethical, and efficient solution for healthcare 

systems of the 21st century. Therefore, continued investigations, mainly on navigating the harmony of federated model 

updates and incorporating explainability, will eventually pay off in Capitalizing Privacy-Aware AI in Clinical Settings. 
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